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Abstract. We consider the symmetry groups for Burgers-type and KdV-type equations, 
as well as their intertwining under the Hopf-Cole and Miura transformations. It is shown 
that Lie point symmetries of one equation in the family may be mapped into integral or 
Backlund transformations of another equation in the family. 

1. Introduction 

Symmetry algebras and groups provide important information about differential 
equations, such as those associated with the names of Hopf and Cole (Hopf 1950, 
Cole 1951) and Miura (1968), are important tools for solution of the equations, 
especially when one of them is linear. In this paper we examine the interrelation 
between the two in certain families of equations. We obtain integral transforms which 
are elements of the symmetry group of nonlinear differential equations which do not 
belong by themselves to the set of Lie-Backlund transformations (Anderson and 
Ibragimov 1979). 

Symmetry groups for differential equations have been defined (Bluman and Cole 
1974, Ovsjanikov 1978) as Lie point symmetries, namely parametric functional trans- 
formations of the dependent and independent variables, which leave a given differential 
equation solution space invariant. The method of construction is straightforward and 
leads to first-order differential operators, which close under commutation into a Lie 
algebra; their exponentiation yields a Lie point transformation group. Anderson and 
Ibragimov (1979) extend this concept non-trivially to Lie-Backlund transformations: 
infinite-order Lie tangent transformations in the infinite-order jet space. It is a fact, 
however, that some possible symmetry transformations are still not accounted for, 
namely those transformations by integral operators. Steinberg and Wolf (1979) used 
various tactics to obtain finite-dimensional Lie algebras of second- and higher-order 
differential and integral operators, and their explicit exponentiation to groups of 
integral transformations, for various simple linear differential equations. In this paper, 
the point symmetry groups of some nonlinear equations are presented. Perhaps 
surprisingly, equations which are related by a transformation do not have the same 
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symmetry group. The main problem we address here is explanation of the differences 
of symmetry groups. It will be shown that the ‘disappearing’ symmetries become 
integral- or even Backlund-type symmetries. 

2. The Burgers-type equations 

The Burgers equation (1948) is the classical example of a nonlinear but linearisable 
(Hopf 1950, Cole 1951) equation. By Burgers-type equations we mean the family 
of equations of the form 

(2.1) U, - U*, + V ( u ,  U,) = 0. 

Specifying V, we obtain the following well known cases: 
(i) HE, the heat equation: V = 0; 
(ii) BE, the Burgers equation: V = uu, ; 
(iii) PBE, the potential Burgers equation: V = + ( u , ) ~ .  

The transformation from the PBE to the BE is mediated by differentiation with respect 
to x. If w ( x ,  y )  is a solution of the PBE, then 

is a solution of the BE. The (non-unique) inverse of (2.2) transforming solutions of 
the BE back to solutions of the PBE is determined by the Backlund transformation 

(2.3a, 6 )  1 2  w, = z  w, = 2, -5.2 

or equivalently, by an integral transformation 

w ( x ,  y )  = 1, dx‘ Z(X1, y )  +s (2.4) 

where 8 is an arbitrary constant. 

mation of the dependent variables. If w(x, y )  is a solution of the PBE, then 
The PBE can be further transformed to the HE through a simple functional transfor- 

h(x, Y )  =exp(-iw(x, Y ) )  (2%) 

is a non-negative solution of the HE. Its inverse is 

w(x,y)=-21nh(x,y) .  (2.56) 

Composing (2.2) and (2.56) we obtain the celebrated Hopf-Cole transformation 

z(x, y )  = -2(d/ax) In h ( x ,  y )  ( 2 . 6 ~ )  

which transforms solutions of the HE to solutions of the BE. The inverse of this is 
obtained through the composition of (2.4) and (2.5a), and is 

(2.66) 
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3. Symmetries of the Burgers-type equations 

Applying well known methods to investigate the so-called infinitesimal symmetry 
operators for a given equation (Bluman and Cole 1974, Ovsjanikov 1978), we find 
the symmetry algebra for the BE (see e.g. Ovsjanikov 1978) which is five dimensional 
while the symmetry algebras for the HE (Bluman and Cole 1974) and the PBE are 
infinite dimensional and isomorphic. 

The symmetry group obtained by exponentiation of the symmetry algebra for the 
BE is 

(3.14) x A i  =xd  +(cx + [ ) ( y d  -6)/(a -cy)+ y 

where a, 6, c, d, y, 5 E R  and ad -6c = 1. It can be shown that this is a nonlinear 
representation of the goup ISL(2, R) that is a semidirect product of the simple real 
group SL(2, R) and the two-dimensional Abelian group. 

A finite-dimensional part of the PBE symmetry group can be obtained from (3.1) 
using the Backlund transformation (2.3). The independent variables x, y transform 
equally as for the BE while for the dependent one we get 

w A w = w  +;(a - c y ) - 1 [ c x 2 + 2 x t + 5 2 ( y d - 6 ) 1 - ~ n ( a - c y ) + ~  (3.2) 

where a, 6 , .  . . are the same as in the previous case and S is a real number. The 
transformations (3.la), (3.16) and (3.2) form a nonlinear representation of 
WSL(2,R): =W20SL(2 ,R)  (see e.g. Wolf 1979, p 420) where Wz is the three- 
dimensional Heisenberg-Weyl group. 

The transformation (3.2) can be mapped by (2.5) to the transformation of the 
dependent variable of the HE 

which together with ( 3 . 1 ~ )  and (3.16) form a finite-dimensional part of the HE 
symmetry group. 

The infinite-dimensional part of the symmetry groups of the PBE and HE do not 
appear in this way, the reason being that the subgroup of point transformations 
belonging to the infinite-dimensional parts corresponds to integral transformations of 
the dependent variable in Burgers’ equation. 

Let us explain this feature in detail. The infinite-dimensional subgroups originate 
in the linear superpositions 

where H, which is assumed to be a solution of the HE, plays the role of group parameter. 
The transformation of w derived from the transformation of h is 
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The integral symmetry transformation of the corresponding BE solution, found 
from ( 3 3 ,  (2.2) and (2.4), is 

where S is a real number and H is a non-negative soiution of the HE. The transforma- 
tions (3.6) form a group parametrised by S and H. The generators of the symmetry 
transformations (3.6) are not first-order differential operators and therefore cannot 
be discovered by the usual methods for studying symmetries. The infinitesimal Lie 
point symmetries of the BE give no hint in this sense that the BE is linearisable, but 
for the PBE this is obvious. It means that even though the linearisation procedure is 
effected by ( 2 . 5 ) ,  the important part of the Hopf-Cole transformation from the point 
of view of symmetry groups is the inverse (2.4) of the derivative transformation (2.2). 
It is this which transforms the BE into the PBE which has an infinite-dimensional 
symmetry group, the same as the linear heat equation. 

The transformation (3.6) can be expressed as the integral superposition of solutions 
(cf Taflin 1981) of the BE: if z and 2 are solutions of the BE then 

is also a solution of the BE. 

4. KdV-type equations and their symmetries 

Another type of equations whose symmetries we study for non-point transformations 
are the Korteweg-de Vries (KdV) 

z ,  + z,,, + 622, = 0 

and modified K d v  (MKdv) equations 
2 

U, + U,,,  - 6~ U, = 0 .  

The solutions of the K d v  and M K d v  equations are related by the Miura transformation 
(Miura 1968) 

(4.3) 
2 z = * U , - ? l  . 

The inverse of this, discovered by Lamb (1974), is the Backlund transformation 

(4.4) 
2 U, = * ( z  + U U, = Tz,, - 2[uz,  f z (2 + U *)I. 

The symmetry group of the K d v  equation is four-dimensional and its action on 
the independent and dependent variables is 

x A .f = a x  +6Sa3y + p  (4.5a) 

z e , , - = f f - 2 2 + S  (4.5b, c )  
R 3 y - y = f f  y s y  

where a,  p, y, 6 E R, a > 0 are group parameters. The action of the three-dimensional 
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symmetry group of the MKdv is 

g R (4.6a, 6 ,  c )  

Now we investigate the correspondence between the actions (4.5) and (4.6) given 
by Miura-Backlund transformation (4.3) and (4.4). It is easy to show that the MKdV 
symmetry group is transformed into the subgroup of the KdV equation defined by 
S = 0. This is evident for the action on the independent variables, while for the 
dependent one, it follows from (4.6) and (4.3) that 

- 1  x - 2 =ax + p  y A y = a 3  Y + Y  u - e = a  U. 

(4.7) 2 8  2 -2 

In order to find which transformations of the MKdv solution correspond to the 
one-parameter group we use the Miura transformation (4.3) and its inverse (4.4), 
both of which hold in the transformed as well as in the untransformed variables. This 
implies 

( 4 . 8 ~ )  

Z = f U , - U  k+2=*e f -62=a-2(*ux-u  ) = a  2. 

2 ox_ =ox = *(2  +e2)  = *(z  +s +eZ) = ux * ( O 2 - u  + S )  

e, = T2ff - 2 ( 6 f z  +26,) 

=U, - 2(6 -U)(*&, -2u,u)* 2(e2 - u 2 + s ) ( u Z  T U, -6) -2su, .  (4.86) 

These equations together with 

ff = x  +66y Y = Y  ( 4 . 8 ~ )  

define a generalised Backlund symmetry of the MKdv equation which has appeared 
as a consequence of the Lie point symmetry of the Kdv  equation. It is interesting 
that the group parameter S has become the parameter of the Backlund transformation. 

5. Concluding remarks 

This paper has in common with Steinberg and Wolf (1979) the quest to provide 
examples of ‘higher’ symmetries, meaning groups of transformations in the solution 
space, of certain differential equations (here nonlinear ones) which include the usual 
Lie point symmetries as a proper subgroup. The new symmetries are integral or 
Backlund transformations. 

Since linear differential equations always possess an infinite-dimensional normal 
symmetry subgroup due to the linear superposition of solutions, this infinite- 
dimensional part should appear in the symmetry group of nonlinear but linearisable 
equations. This proves to be true for the Burgers (and can be shown also for the 
Liouville) equation, but since the corresponding infinite-dimensional part contains 
only integral transformations, these are not easy to detect. 

The case of the Kdv-type equation shows that Backlund transformations may be 
obtained as a consequence of point symmetry groups. 
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